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Abstract

The aim of this paper is to present a new global formula for the Lichnerowicz decomposition of the square of a general Dirac
type first order differential operator. Concerning gauge theories, this formula permits re-writing the Yang–Mills action linearly in
the curvature so that it becomes similar to the Einstein–Hilbert action. In fact, it is shown that the two action functionals can be
expressed in identical geometric forms. This holds true even more also for Yang–Mills–Yukawa-like gauge theories. From this
one infers that, in particular, the full bosonic action of the (minimal) Standard Model can be expressed geometrically in complete
accordance with Einstein’s theory of gravity.
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1. Motivation and the main statement

While the Yang–Mills action is quadratic, Einstein’s theory of gravity is based on a functional which is linear in
the curvature. This is known to have far reaching consequences. Over the last few decades many attempts have been
made to recast Einstein’s theory of gravity into a “Yang–Mills-like” form. In the following we reverse this point of
view and show how Yang–Mills gauge theories can be expressed linearly in the curvature, recasting gauge theories
into a “gravity-like” form. For this we discuss a canonical action functional within the geometrical setting of Dirac
bundles in the light of a new global Lichnerowicz-like formula introduced in this article.

The paper is organized as follows. In the first section we present some motivation and the main statement of
the paper. We also discuss some geometrically motivated restrictions on the manifold of all Dirac type first order
differential operators. In the second section we present a proof of the main statement. This proof permits to gain
some insight into the relation between Dirac type first order differential operators and connections on general Dirac
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bundles. In particular, the proof shows that every Dirac type first order operator naturally induces a connection and
thus a curvature on a the Dirac bundle. This is used in the third section which is devoted to the relation between the
Yang–Mills and the Einstein–Hilbert action. This discussion is based on the results presented in the preceding sections
which allow to express the canonical action, presented in the first section, in a purely geometrical form. The fourth
section closes the article with the conclusion of the results presented, some general remarks and a brief outlook.

1.1. Motivation

We call in mind that a first order differential operator D is called of “Dirac type” provided its square satisfies

D2
= −4 + V . (1)

Here, 4 := −evg(∇ ◦ ∇)
loc.
= −gi j

(
∇i∇ j − Γ k

i j∇k

)
denotes the Bochner–Laplacian defined by a connection ∇ on

the Clifford module (“Dirac”) bundle ξD ≡ (E,M, πE , γ ), and V ∈ Γ (End(ξD)) is a zero order differential operator.
Both operators (∇, V ) are uniquely determined by D. In the above local formula for the Bochner–Laplacian we used

Einstein’s summation convention with respect to a local chart M ⊃ U
xk

−→ R;Γ k
i j are the corresponding Christoffel

symbols with respect to a metric gi j
≡ gM(dx i , dx j ) on M.

In the following we shall lay the basis for a mathematical discussion of the canonical functional

SD : D(ξD) −→ C

D 7→

∫
M

∗trEV (2)

on the manifold D(ξD) of all Dirac type first order differential operators compatible with the Clifford action γ.
It turns out that the “universal Dirac action” (2) is invariant with respect to the action of the diffeomorphism

group Diff(ξD) of ξD. Accordingly, it is of interest to investigate the geometrical structure of the quotient set
MD := D(ξD)/Diff(ξD) and to analyze in what sense the Dirac functional (2) descends to this “moduli space of
Dirac type operators”. The main proposition of this article will provide us with a purely geometrical form of the
integrand of the canonical functional (2). This in turn may help classify Dirac type differential operators on general
Clifford module bundles. For this we present some natural restrictions on D(ξD). As mentioned already, we show in
the third section that the universal Dirac action (2) actually provides a natural generalization of the action functional
of general relativity.

The decomposition of D2 into a second and zero order differential operator is known as “general Lichnerowicz
decomposition” (see, for instance, in [5,7,3]). In particular, if D := γ (∂A) ≡ 6∂A is defined in terms of a Clifford
connection on a Clifford module bundle E πE

−→ M , i.e. a connection that satisfies the relation

[∂A, γ (a)] = γ (∇Cla) (3)

for all sections a into the Clifford bundle of gM, the relation (1) reads (cf. [15]):

6∂2
A = evg(∂A ◦ ∂A)+ γ (FA). (4)

Here, respectively, ∇
Cl is the connection on the Clifford bundle that is induced by the Levi-Civitá connection of

gM,FA ∈ Ω2(M,End(E)) is the curvature with respect to the Clifford connection ∂A, and γ is the Clifford action of
the cotangent bundle τ ∗

M of M on ξD, whereby explicitly

γ (FA) =
1
4

rMidE + γ (FE/S
A ). (5)

The smooth function rM on M denotes the scalar curvature with respect to the metric gM, and FE/S
A := FA− 6R is

the “relative” (“twisting”) curvature of ∂A; 6R is the curvature tensor with respect to ∇
Cl represented on the Clifford

module bundle.
Consequently, the zero order operator V for Dirac type operators defined by Clifford connections can be expressed

entirely in terms of the curvature of the Clifford connection that also determines the Bochner–Laplacian.
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In this article we prove the following generalization of the well-known Lichnerowicz decomposition (4) of 6∂2
A:

Main statement 1.1. Let ξ = (E,M, πE ) be a complex vector bundle of finite rank over a (semi-)Riemannian
manifold (M, gM) of dimension 2n = p + q and arbitrary signature s = p − q. Let τ ∗

M
γ

−→ End(ξ) be a Clifford
mapping with respect to gM which turns ξ into a Dirac bundle ξD. For every Dirac type first order differential operator

D : Γ (ξD) −→ Γ (ξD) (6)

there exists a connection ∂D on ξD that is uniquely determined by D, so that

D2
= evg(∂D ◦ ∂D)+ γ (FD + ∂DωD + ωD ∧ ωD). (7)

Here, FD ∈ Ω2(M,End(E)) is the curvature with respect to the connection ∂D, and

ωD := Θ ∧ (D − 6∂D) ∈ Ω1(M,End(E)) (8)

is the “Dirac form” associated with D ∈ D(ξD).

Moreover, the “Dirac connection”

∇D := ∂D + ωD (9)

is a canonical representative of D, i.e. γ (∇D) = D.

The canonical 1-form Θ ∈ Ω1(M,End(E)) on ξD is basically given by the soldering form of the frame bundle
of M lifted to the Clifford bundle τCl with respect to gM (for details, please see Section 2, Formula 6 in [22]). This
canonical 1-form has the basic feature of being covariantly constant with respect to every Clifford connection ∂A,
i.e. ∂AΘ ≡ 0.

We call the connection ∂D, uniquely determined by D, the “Bochner connection” and (7) the “general
Lichnerowicz formula”. Indeed, the formula (7) shares the two basic features of the Lichnerowicz formula (4):
Each summand is fully determined by D itself and the zero order term is determined by the same connection that
also determines the second order part in the decomposition (1). We shall see that the formula (7) will reduce to the
Lichnerowicz formula (4) in the case where D is determined by a Clifford connection, i.e. D = 6∂A. In this sense, the
formula (7) may be regarded as a generalization of (4). Note, however, that the Bochner connection ∂D, in general,
does not represent D. That is, γ (∂D) 6= D.

General remark concerning D(ξD): There are (at least) two obvious questions related to the domain of definition of
the Dirac functional SD :

1. The functional (2) is considered to be defined on (an appropriate sub-set of) the affine manifold of all Dirac type
first order differential operators on a given Clifford module bundle ξD = (ξ, γ ). Here, ξ ≡ (E,M, πE ) is a smooth
(hermitian) vector bundle over a smooth (simply) connected, orientable (semi-)Riemannian manifold (M, gM) of
even dimension and γ denotes some given (reducible) Clifford action of the Clifford bundle τCl associated with
(M, gM). However, since SD is also regarded as a functional of gM the Clifford module structure of ξD is not
considered to be fixed but, instead, results from a solution of the corresponding variational problem. To avoid the
problem of the dependence of D(ξD) on the Clifford action γ , one may restrict to “twisted Grassmann bundles”,

ξD ' τCΛM ⊗M ξE, (10)

which carry a natural Clifford action uniquely defined in terms of gM (please, see also the corresponding remarks
in Section 3). Here, τΛM denotes the Grassmann bundle, τCΛM its complexification and ξE some appropriate
(hermitian) vector bundle.

2. In this paper we shall assume that either M is compact, or that for D ∈ D(ξD) the “Dirac potential”

VD(D) := trEV ∈ C∞(M) (11)

has an appropriate asymptotic behavior so that (2) is well defined. From a physical perspective either assumption
seems spurious for a general space–time M . However, the following discussion is mainly concerned with the
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integrand of (2) which is independent of the signature of the metric gM and the “asymptotic behavior” of D.
Hence, without loss of generality we can equally well restrict our discussion to the universal Dirac Lagrangian

LD : D(ξD) −→ Ωdim(M)(M)

D 7→ ∗trEV, (12)

which defines the Dirac functional SD instead of the functional itself.
Whenever the latter is considered, however, either of the above mentioned assumptions is (implicitly) assumed

to hold true. This, however, will give rise to analytical restrictions on the domain of definition of SD, which are not
discussed in what follows.

1.2. Some geometrical constrains on D(ξD)

In the form (7) the general Lichnerowicz decomposition (1) may be helpful for classifying Dirac type first order
differential operators. This in turn may provide some “regularity conditions” on MD analogous to the (anti-)self-
duality condition in the case of pure Yang–Mills theory (please, see also our discussion at the end of the paper).

If, for instance, we impose on D the condition to solve the differential equation

∂DωD + ωD ∧ ωD
.
= 0, (13)

which is equivalent to restricting D to those D ∈ D(ξD) for which

D2
= evg(∂D ◦ ∂D)+ γ (FD), (14)

we find that, in this form the general Lichnerowicz formula (7) is fully analogous to the original Lichnerowicz formula
(4). This holds true especially for the specific sub-class of solutions of (13) that is given by those D ∈ D(ξD) also
satisfying

∇D
.
= ∂D. (15)

The unique solution is then provided by Dirac type operators that are defined in terms of Clifford connections, i.e.

∇D = ∂D = ∂A. (16)

Note that each connection class contains exactly one Dirac connection. This is because ∂D is uniquely defined by
D (please, see the injection (27) below). Consequently, every connection class has at most one Clifford connection.

From (5) it follows that for D = 6∂A, the universal Dirac functional becomes proportional to the Einstein–Hilbert
functional of general relativity. In particular, for D = 6∂A the functional (2) is independent of the twisted part of the
Clifford connection (please, see also our discussion in Section 3).

Another natural condition imposed on D is provided by the weaker requirement that only the Bochner connection
coincides with a Clifford connection, i.e.

∂D
.
= ∂A. (17)

In this case, the Dirac forms turn out to have a very particular form and the unique solution of (17) is given by the
Dirac connections

∇D = ∂A + Θ ∧ (γM ⊗ φ), (18)

which are known to play a fundamental role in mathematics as well as in physics (cf. [18,4,6,21]). In particular,
Dirac type operators satisfying the condition (17) are very much related to spontaneous symmetry breaking in gauge
theories. In fact, under the condition (17), the critical points of the Dirac functional (2) turn out to spontaneously
break the underlying gauge symmetry if φ 6= 0. This is known to play a basic role in the geometrical description of the
standard model of elementary particles (cf. Proposition 3.1 in [22]). In (18), respectively, γM ∈ Γ (τCl) is proportional
to the volume form µM ∈ Ω2n(M) defined by gM, and φ ∈ Ω0(M,End(E)) is a section which super-commutes with
the Clifford action γ . However, the universal Dirac action is still independent of the twisting part of ∂A even for these
slightly more general Dirac type operators uniquely defined by the condition (17).
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Yet another geometrically natural restriction of the Dirac functional (2) is given by those D ∈ D(ξD) satisfying

divDωD := evg (∂DωD)
.
= 0. (19)

Hence, the zero order operator associated with D is given by the (“quantized”) curvature of the Dirac connection
∇D ∈ A(ξD):

V = γ (F∇D). (20)

In the third section we shall come back to this particular form of the endomorphism V ∈ Γ (End(ξD)) that is
naturally associated with D ∈ D(ξD). Indeed, we shall prove that for any Dirac type first order differential operator
D ∈ D(ξD) the two top forms ∗trEV and ∗trE (γ (F∇D)) on M define the same cohomology class in H2n

dR(M). This will
also provide us with a simple geometrical interpretation of the condition (19).

2. The proof of the main statement

In this section formula (7) is proved. The way the proof is presented yields some insight into the relation between
connections and Dirac type first order operators on a general Clifford module bundle. It is well known that there is
a one-to-one correspondence between Dirac type operators and “Clifford super connections” (e.g. see [3]). Indeed,
every Dirac type operator only corresponds to an equivalence class of connections on a Clifford module bundle.
However, in the following we show that every such equivalence class has a natural representative, called the “Dirac
connection” that is induced by the Dirac type operator considered. In this section we also discuss this fact from a
global geometrical point of view. We show that, in contrast to the Bochner connection uniquely determined by a Dirac
type operator, the Dirac connection can be always geometrically interpreted as global section of a certain principal
fibering. It is the curvature of these distinguished sections (which allow to make the decomposition of the square
of any Dirac type operator most similar to the usual Lichnerowicz formula of Dirac type operators defined in terms
of a Clifford connections) that yields a natural generalization of the Einstein–Hilbert Lagrangian density as will be
discussed in some detail in Section 3.

To prove the statement (1.1) we first summarize some facts on Dirac type first order differential operators.

2.1. Preliminaries

Let again ξD := (E,M, πE , γ ) be a Clifford module bundle of finite rank over a smooth, orientable, (simply-)
connected (semi-)Riemannian manifold (M, gM) of dimension 2n = p + q and arbitrary signature s = p − q.

The Clifford action τ ∗

M ×M ξD
γ

−→ ξD yields the mapping

δγ : Ω1(M,End(E)) −→ Ω0(M,End(E))
α 7→ γ (α) (21)

which has a canonical right inverse

extΘ : Ω0(M,End(E)) −→ Ω1(M,End(E))
Φ 7→ Θ ∧ Φ. (22)

Let, respectively, A(ξD) be the affine set of all (linear) connections on ξD and D(ξD) be the affine set of all Dirac
type operators on ξD compatible with the Clifford action γ . We denote by℘ := extΘ◦δγ the corresponding idempotent
associated with the Clifford action γ . Then,

D(ξD) ' A(ξD)/ ker(δγ ). (23)

Consequently, there is a one-to-one correspondence between Dirac type operators and equivalence classes of
connections on ξD. However, it turns out that each connection class has a natural representative.
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2.2. The geometrical meaning of the Bochner and the Dirac connection

We make use of the following map

Ξ : A(ξD) −→ Ω1(M,End(E))
∇ 7→ Ξ∇ , (24)

where, locally,

Ξ∇

loc.
= −

1
2

gli X l
⊗ γ (X j )

(
[∇X j , γ (X

i )] + ωi
jkγ (X

k)
)

(25)

with (X1, . . . , Xn) being a local co-frame on M and (X1, . . . , Xn) its dual. The symbols ωi
jk := X i (∇TM

X j
Xk)

are the corresponding Levi-Civitá connection coefficients with respect to gM and the chosen frame and gi j ≡

(gM(X i , X j ))−1.
One could consider Ξ as “measuring” how much ∇ deviates from being a Clifford connection. The form Ξ has

been introduced already in [1]. We then have the following

Lemma 2.1. The affine mapping

Π : A(ξD) −→ A(ξD)

∇ 7→ ∇ + Ξ∇ (26)

is well defined on A(ξD)/ ker(δγ ). Consequently, one has a well-defined mapping

ΠD : D(ξD) −→ A(ξD)

D 7→ ∂D := Π (∇) (27)

with γ (∇) = D. We call the elements of im(ΠD) ⊂ A(ξD) the “Bochner connections” on the Clifford module bundle
ξD.

Proof. Let ∇,∇ ′
∈ A(ξD). Then, γ (∇) = γ (∇ ′) iff ∇

′
− ∇ ∈ ker(δγ ) ⊂ Ω1(M,End(E)). Moreover, Ξ∇ ′ − Ξ∇ =

∇ − ∇
′ and hence Π (∇ ′) = Π (∇). �

Note that ker(δγ ) ' ker(ΠD) and thus

D(ξD) ' im(ΠD). (28)

This equivalence gives the geometrical meaning of the differential form Ξ∇ associated with a connection ∇ ∈

A(ξD) on a Clifford module bundle ξD. Note that in general γ (∂D) 6= D. However, every D ∈ D(ξD) has a natural
representative within the quotient A(ξD)/ ker(δγ ).

Indeed, there is a natural lift

A(ξD)/ ker(δγ ) −→ A(ξD)

[∇] 7→ ∇D := Π (∇)+ ℘(∇ − Π (∇)). (29)

Note that each of the summands is uniquely defined by D ∈ D(ξD), which corresponds to [∇] ∈ A(ξD)/ ker(δγ ).
We call (29) the Dirac connection on ξD that corresponds to D.

Lemma 2.2. For D ∈ D(ξD), let ωD := extΘ (D − 6∂D) ∈ Ω1(M,End(E)) be the associated Dirac form such that the
Dirac connection reads

∇D = ∂D + ωD. (30)

Like the Bochner connection the Dirac form only depends on D and

Ξ∇D = −ωD. (31)
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Proof. Let ∂D be the Bochner connection with respect to D. Since ωD = ℘(∇ −Π (∇)) it is clear that the Dirac form
is independent of ker(δγ ) ⊂ Ω1(M,End(E)). Moreover, since γ (∇D) = D we have

∂D = Π (∇D)

= ∇D + Ξ∇D

= ∂D + ωD + Ξ∇D , (32)

which proves the statement. �

To obtain a geometrical interpretation of the Dirac connections on ξD, let Tγ := ker(℘) be the translational sub-
group of Ω1(M,End(E)) ' T∇A(ξD). The fibering

Tγ ↪→ A(ξD)� D(ξD)

∇ 7→ D (33)

is a smooth principal Tγ bundle which admits a natural section

σD : D(ξD) −→ A(ξD)

D 7→ ∇D. (34)

We are thus allowed to make the identification:

A(ξD) = D(ξD)× ℘⊥(Ω1(M,End(E))), (35)

where ℘⊥
:= id − ℘ is the complementary idempotent.

Although Tγ ' ker(δγ ), the above identification is a slightly stronger statement than the isomorphism (23). Note
that, in contrast to σD, the mapping (27) does not define a section of the principal fibering (33).

2.3. The zero order operator V

We now turn to the proof of the first part of the statement (1.1). For this we make use of the following formula for
the general Lichnerowicz decomposition (1):

4 = −evg(∂D ◦ ∂D), (36)

V = γ (F∇)+ evg

(
∇Ξ∇ + Ξ 2

∇

)
(37)

with ∇ ∈ A(ξD) being any representative of D. The validity of these formulas was proved in [1] in the case of a
positive signature. In particular, it has been shown that they are independent of the choice of a Clifford connection.
In [21] it was shown that these formulas are actually independent of any representative ∇ (finally, [22] treats the case
of arbitrary signature). The main drawback of the formula (37) is that, in contrast to the Bochner–Laplacian, it is
defined in terms of the arbitrary choice of a representative ∇ ∈ A(ξD) of D. It is thus not quite analogous to (4).
Moreover, each summand in (37) strongly depends on the choice of ∇. Only the sum is shown to be independent of
this choice.

Theorem 2.1. Let D ∈ D(ξD) be a generalized Dirac operator. The zero order part V of D2 can be expressed in
terms of the Bochner connection uniquely associated with D:

V = γ (FD + ∂DωD + ωD ∧ ωD), (38)

where FD ∈ Ω2(M,End(E)) is the curvature on ξD with respect to the Bochner connection ∂D ∈ A(ξD) and
ωD := extΘ (D − 6∂D). Here, both FD and ∂DωD +ωD ∧ωD are considered as sections of the bundle τCl ⊗M End(ξD).

Expressed in this form, the zero order part of D2 formally looks like the “quantized” curvature of the Dirac
connection ∇D on ξD. However, the section

∂DωD ∈ Γ (τCl ⊗M End(ξD)) (39)

also contains a “symmetric” part within τCl.



2006 J. Tolksdorf / Journal of Geometry and Physics 57 (2007) 1999–2013

Proof. Since the zero order operator V is independent of the connection ∇ ∈ A(ξD) representing D, we may replace
∇ in (37) by the Dirac connection (30) to obtain

V = γ (F∇D)+ evg

(
∇DΞ∇D + Ξ 2

∇D

)
. (40)

We use Lemma 2.2 and the specific form of the Dirac connection to again re-write (37) as

V = γ (FD)+ γ (ωD ∧ ωD)+ γ (dDωD)± evg (∂DωD) . (41)

Here, FD ∈ Ω2(M,End(E)) is the curvature on ξD with respect to the Bochner connection ∂D ∈ A(ξD), and dD
denotes the induced exterior covariant derivative with respect to ∂D. The formula (38) then follows from the well-
known linear isomorphism between the Clifford and the Grassmann algebra, whereby the Clifford product (denoted
by juxtaposition) can be expressed as

αβ = ±gM(α, β)+ α ∧ β (42)

for all α, β ∈ T∗M ↪→ Cl(M, gM) (the latter is the total space of the Clifford bundle). �

To prove the validity of the formula for the Bochner–Laplacian (36) is simply a copy of the proof already presented
in [1]. There it was also shown that the Bochner–Laplacian is independent of the choice of a Clifford connection.
That the Bochner connection is indeed unique follows once again from the isomorphism (28). This finally proves the
validity of the assertion (1.1).

In the next section we discuss the Yang–Mills functional and the Einstein–Hilbert action of gravity in terms of the
generalized Lichnerowicz formula (7).

3. Gauge theories and the Einstein–Hilbert action

In contrast to the Yang–Mills functional, the Einstein–Hilbert functional is defined linearly in the curvature1:

SEH(gM) := κEH

∫
M

∗rM. (43)

Here, gM ∈ Γ (ξEH) is considered as being a section of the “Einstein–Hilbert bundle” ξEH :

πEH : EEH ≡ F M ×GL(2n) GL(2n)/SO(p, q) −→ M, (44)

where F M is the total space of the frame bundle of M and “∗” is the Hodge map with respect to such a section and a
chosen orientation of M . Again, the function rM ∈ C∞(M) denotes the scalar curvature of the base manifold M with
respect to the (metric equivalent) section gM ∈ Γ (ξEH). However, the gravity action functional may be expressed also
in terms of a curvature on the total space of a Dirac bundle.

Let ξD := τΛM be the Grassmann bundle of M (with total space ΛM) and D := d + δ the “Gauss–Bonnet”

(“Hodge–de Rham”) operator acting on Γ (ξD) = Ω(M) = Ω+(M) ⊕ Ω−(M). Since τCl
lin.
' τΛM there exists a

natural Clifford action τ ∗

M
γ

−→ End(τΛM) on the Grassmann bundle τΛM, turning the latter into a Dirac bundle so that

D = γ (∂) ≡6∂. (45)

Here, ∂ is the (canonical) Clifford connection on τΛM that is induced by the (semi-)Riemannian connection with
respect to gM. The Einstein–Hilbert action (43) may be re-written as

SEH(gM) = κ̃EH

∫
M

∗trΛMγ (R), (46)

where R ∈ Ω2(M,End(ΛM)) is the curvature on the total space of the specific Dirac bundle τΛM with respect to ∂ .
Accordingly, γ (R) ∈ Γ (End(τΛM)), and trΛM denotes the (fiber-wise) trace on the bundle End(τΛM).

1 For simplicity, we skip the (numerical) details of the constants adjusting the correct physical dimensions which depend on the choice of units.
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There are two reasons for recasting the Einstein–Hilbert functional (43) into the form (46): First, it shows that the
gravity action can be expressed also in terms of the curvature on (the total space of) a certain Dirac bundle. Second, in
this way the Einstein–Hilbert functional can easily be generalized to arbitrary Dirac bundles ξD. For this one replaces

∂  ∂A, (47)

so that the Einstein–Hilbert action reads:

SEH(gM) = λEH

∫
M

∗trEγ (FA), (48)

where again, FA ∈ Ω2(M,End(E)) is the curvature on E with respect to the Clifford connection ∂A. Accordingly,
γ (FA) ∈ Γ (End(ξD)), and trE denotes the (fiber-wise) trace on the endomorphism bundle End(ξD).

As mentioned already in the first section, the Einstein–Hilbert action (48) is but the (appropriately normalized)
Dirac functional (2) evaluated with respect to 6∂A :

SEH(gM) ∼ SD( 6∂A). (49)

In fact, this Dirac functional is independent of the (twisting part of the) chosen Clifford connection (47). The reason
for this replacement is that, contrary to ∂A, the operator ∂ has no global meaning on a general Dirac bundle. Hence,
by an arbitrary choice of a Clifford connection, the Einstein–Hilbert action can be written as a specific Dirac action
on a general Dirac bundle. Of course, with regard to the Grassmann bundle, ∂ is the distinguished Clifford connection
which defines the Gauss–Bonnet operator.

General remark on the role of the Clifford mappings γ :
For every Dirac bundle ξD = (E,M, πE , γ ) over an even dimensional, orientable (semi-)Riemannian manifold

(M, gM) one has (see [2] and, for example, in [3])

End(ξD) ' τCCl ⊗M EndCl(ξD). (50)

Basically, this follows from the famous Wedderburn theorems (cf. Theorem 11.16.1 in [8]). Here, τCCl denotes the
complexified Clifford bundle and EndCl(ξD) the sub-bundle of endomorphisms on ξD which super-commute with the
Clifford action γ . As a consequence, the total space E of any Dirac bundle ξD locally looks like a “twisted spinor
bundle”, i.e. locally E ' S ⊗U W with ι : U ↪→ M being a local (simply connected) sub-set of M and S � U
the (local) spinor bundle with respect to gU := ι∗gM and the induced orientation of U ⊂ M . The corresponding

(local) vector bundle W � U is given by W := HomCl(S, E). Hence, τCCl
loc.
' End(S) and EndCl(E)

loc.
' End(W ). In

particular, if M is a spin manifold then

ξD ' τS ⊗M ξW (51)

where τS denotes the spinor bundle (with respect to a chosen spin structure Λ) and ξW ≡ (W,M, πW).
Because of (50), a Clifford action

τCl ×M ξD
γ

−→ ξD (52)

is seen to correspond to the bundle EndCl(ξD). For example, if M admits a spin structure Λ, then for ξD := τCΛM one
has EndCl(ξD) ' End(S∗). This is because M is assumed to be even dimensional. Note that for M being spin there
is a natural Clifford module structure on τCΛM that is fully determined by (gM,Λ). This reduces further to gM if M is
also assumed to be simply connected. In fact, this can be generalized.

Although there is not a unique Clifford action even on Dirac bundles ξD fulfilling

ξD ' τCΛM ⊗M ξE, (53)

with ξE ≡ (E,M, πE) being some given (hermitian) vector bundle, there is a natural Clifford action γ on any “twisted
Grassmann bundle” (53) according to the canonical (linear) identification τΛM ' τCl. This particular Clifford action
γ is then considered to be determined by the critical points of the Dirac action (2), see also our corresponding remark
in Section 1 on D(ξD).
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Note that it is EndCl(ξD) of the global decomposition of End(ξD) that renders the operator ∂ meaningless but,
instead, privileges the operators ∂A on general Dirac bundles ξD.

Proposition 3.1. For any Dirac bundle ξD = (E,M, πE , γ ) over an orientable (semi-)Riemannian manifold (M, gM)

the Dirac action reads:

SD(D) =

∫
M

∗trEγ (FD)±

∫
∂M
ιXDµM. (54)

Here, FD ≡ F∇D denotes the curvature with respect to the Dirac connection ∇D, µM is the (semi-)Riemannian volume
form on M, and ιXD is the inner derivative (contraction) with respect to the “Dirac (vector) field”

XD := (trEωD)
]
∈ Γ (τM). (55)

Therefore, for closed compact manifolds (i.e. “up to boundary terms”) the Dirac action

SD(D) =

∫
M

∗trEγ (FD) (56)

naturally generalizes the Einstein–Hilbert action (48). Especially, for ξD := τΛM one obtains SD( 6∂) ∼ SEH(gM).

Due to the linear isomorphism between the Clifford and the Grassmann algebra, we may identify γ (FD) ∈

Γ (End(ξD)) with FD ∈ Ω2(M,End(E)) and call FD ∈ Γ (ξ∗

D ⊗M ξD) the “Dirac curvature”.

Proof. The statement is an immediate consequence of Theorem 2.1. From the latter it follows that the zero order part
associated with (the square of) any Dirac type first order differential operator D actually reads

V = FD ± divDωD. (57)

The assertion then follows from the identity

trE (divDωD) ≡ divXD (58)

where “div” refers to the Levi-Civitá connection with respect to gM. Thus,

∗trE (divDωD)= £XD µM (59)

with £XD being the Lie derivative with respect to the Dirac field XD on M. �

The condition (19) thus implies that the (local) flow generated by the Dirac vector field XD ∈ Γ (τM) is volume
preserving. Accordingly, we call D ∈ D(ξD) “unimodular” if divXD = 0. Clearly, this condition is weaker than (19).
In any case, the two top forms ∗trEFD and ∗trEV on M are shown to yield the same cohomology class in H2n

dR(M).
Of course, for this the orientability of M is not really necessary. On the other hand, it is the form (54) of the canonical
functional (2) which clearly demonstrates that the Dirac functional is a natural generalization of the Einstein–Hilbert
functional.2

In [22] we introduced a specific class of gauge theories, called “gauge theories of Dirac type”, which permits re-
writing the full action functional of the (minimal) Standard Model (including gravity) in terms of an appropriate Dirac
type differential operator. In particular, the bosonic action of the Standard Model has been shown to be expressible in
terms of the Dirac action (2). Therefore, in the light of the results presented, we put forward the following

Theorem 3.1. There are (hermitian) Dirac bundles ξD := ξF, called “fermion bundles”, and a certain class of Dirac
type first order differential operators D ∈ D(ξD), called of “Pauli–Yukawa type”, such that (up to boundary terms)

SEHYMH(gM, A, ϕ) := λEH

∫
M

∗rM ± λYM

∫
M

∗κ(FA, FA)± λH

∫
M

[∂Aϕ ∧ ∗∂Aϕ ± ∗VH(ϕ)]

= λD

∫
M

∗trEFD, (60)

2 The author thanks the referee for appropriate comments on this point.
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where

VH(ϕ) := λ‖ϕ‖
4
− µ2

‖ϕ‖
2 (61)

is the well-known Higgs potential and λEH, . . . , λD, λ, µ ∈ R are appropriate constants. The relative signs depend
on the signature and the definition of the Clifford action. Moreover, ϕ ∈ Γ (ξH) is a section of a specific sub-vector
bundle ξH ⊂ ξD (the “Higgs bundle”) and κ denotes an appropriate inner product on ΛM ⊗M Ad(G), with Ad(G)
being the total space of the adjoint bundle Ad(G) associated with a chosen principal G-bundle.

Proof. The statement results from the above Proposition 3.1 together with Proposition 5.1 in [22] and the uniqueness
of V . Note that the corresponding Dirac type operators are immediate generalizations of those satisfying the condition
(17) and are discussed in some detail in Section 5.1 in loc. sit. �

When seen as a specific Dirac type gauge theory, the total action of the (minimal) Standard Model takes the simple
geometrical form (again, when appropriate boundary conditions are taken into account)

SSM =

∫
M

∗ [〈ψ, Dψ〉E + λDtrEFD]

≡

∫
M
LD,tot(D, ψ), (62)

where 〈·, ·〉E is a hermitian product on ξF, ψ ∈ Γ (ξF) and D = DP ∈ D(ξF) is of “Pauli–Yukawa type”.
For the convenience of the reader, we call in mind that a “fermion bundle” ξF is defined as a specific Dirac bundle

whose structure group can be reduced to the sub-group Spin(2n)×ρF(G) according to the global decomposition (50).
The Lie group G is assumed to be semi-simple, compact and real. Likewise, the “fermion representation” ρF of G is
assumed to be unitary. We emphasize that both ψ ∈ Γ (ξF) and the Dirac curvature FD ∈ Γ (ξ∗

F ⊗M ξF) carry the same
representation ρF.

The full bosonic part of the action of the Standard Model (including Einstein’s theory of gravity) can thus be
geometrically expressed linearly in the curvature of the Dirac type operator which also yields the hermitian form
defining the fermionic action on an appropriate fermion bundle.

According to the definition of Dirac type gauge theories, one infers from the results presented that the
corresponding top forms of these gauge theories (basically defined by the choice of D ∈ D(ξF)) have the universal
geometrical form given by the right-hand side of (62). We mention that the total Dirac Lagrangian

LD,tot : D(ξD)× Γ (ξD) −→ Ω2n(M)

(D, ψ) 7→ LD,tot(D, ψ) (63)

is equivariant (“covariant”) with respect to the action of the diffeomorphism group of the underlying Dirac bundle,
which in the case of Dirac type gauge theories (where ξD ≡ ξF) decomposes into the semi-direct product

GF ≡ Diff(ξF) = Gex n Gin (64)

with

Gex ' Diff(M),
Gin ' GEH ×M GYM. (65)

Here, GEH is the gauge group of the SO(p,q)–reduced frame bundle of M corresponding to a fixed Clifford action γ ,
and GYM is the appropriate Yang–Mills gauge group considered (cf. Section 2.2. in [22]). A point-wise look at the
Einstein–Hilbert gauge group corresponds to the “rotation of SO(p,q)-frames”, and the Yang–Mills gauge group can
be identified with ρF(G). The semi-direct decomposition (64) refers to the non-trivial action of the diffeomorphism
group of M on E . Indeed, for f ∈ Diff(M) the Clifford action with respect to f −1∗gM coincides with the original
Clifford action on E iff f is an isometry.

Therefore, the “total Dirac action”

SD,tot(D, ψ) :=

∫
M
LD,tot(D, ψ) (66)

is invariant with respect to the action of Diff(ξD). Consequently, it formally descends to the quotient set MD.
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The gauge group (64) naturally generalizes the gauge group of Einstein’s theory of gravity which, when written in
the form (46), reads Diff(τΛM) ' Diff(M)nGEH. We recall that only the gauge group GEH can be physically realized.
In contrast, the “symmetry” with respect to Diff(M) reflects the independence of physics on the choice of a particular
manifold (background) structure represented by M . However, one may ask how to experimentally select a specific
diffeomorphism class [M]. This is similar to how distinguish a specific GYM.

The possibility to geometrically consider the Standard Model as a specific gauge theory of Dirac type (and hence
to re-write its action in the form (62)) also has predictive power. Indeed, the physical consequences, for example, with
respect to the prediction of the mass of the Higgs boson are discussed in detail in [23].

Of course, also the pure Yang–Mills action

SYM(A) := λYM

∫
M

∗κ(FA, FA) (67)

can be expressed linearly in the curvature of an appropriate Dirac connection (9) analogous to the Einstein–Hilbert
functional. For this one makes use of the fact that also the Yang–Mills curvature can be regarded as a curvature on
(the total space of) an appropriate Dirac bundle (cf. again [22]):

SYM(A) ∼

∫
M

∗trEγ (F
E/S
A )2. (68)

However, for corresponding D ∈ D(ξF) one obtains

SYM(A) ∼ SD(D) (69)

only if (M, gM) is assumed to be flat. This reflects that the critical points of the pure Yang–Mills functional are related
to the data determining the twisting part of ξF only (i.e. to the second factor of the global decomposition (50)). In
general, only the combination

SD(D) ∼ SEH(gM)+ SYM(A), (70)

is natural within Dirac type gauge theories whereby the critical points of this Dirac action yield a mutually dependence
of the Clifford action γ and the Yang–Mills connection A. Interestingly, a similar statement holds true for the Higgs
functional. Indeed, for appropriate D ∈ D(ξF) the Higgs functional can be re-written in terms of a Dirac functional

SH(ϕ) ∼ SD(D) (71)

only if the Yang–Mills connection A (and gM) is assumed to be flat. Otherwise, one ends up with (60). Therefore,
when seen as a particular Dirac type gauge theory, the Higgs action (including the Higgs potential) naturally comes
with the (Einstein–Hilbert) Yang–Mills functional.
General remark on the functional SD: Some remarks may be worth mentioning to avoid confusions with respect to
the geometrical form (54) of the Dirac functional. In fact, the reader may wonder how an action linear in the (Dirac)
curvature can yield reasonable field equations. The reason is the same as for the Einstein–Hilbert action (46). One has
to take the variation not with respect to the (Dirac) connection but with respect to the fields defining this connection.
In this sense, the role of Dirac connections (30) with respect to the Dirac action (56) is similar to metric connections
in Einstein’s theory of gravity.

To make this more precise, let again ξD ' τCΛM ⊗M ξE be (equivalent to) a twisted Grassmann bundle and

ζD := ξEH ×M End(ξD) (72)

be the fiber bundle over M with total space Z . Also, let J1ζD ≡ (J1Z,M, π1) be the corresponding first jet bundle.
A Dirac type first order differential operator D ∈ D(ξD) may be identified with (an equivalence class of) sections
σ ∈ Γ (ζD) so that the universal Dirac Lagrangian (12) gives rise to the natural Lagrangian mapping

L : J1Z −→ Λ2n M

j1σ(x) 7→ LD(D)|x∈M . (73)

It turns out that this mapping is actually independent of the representative σ and thus well defined (i.e. it only
depends on D). Consequently, the Dirac action may be considered equally well as a functional of σ = (gM,Φ) with
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Φ ∈ Γ (End(ξD)) being a “(bosonic) super-field” taking values in EndCl(ξD). Likewise, every choice of D ∈ D(ξD)

fixes a super-field Φ corresponding to D (and hence to an appropriate Dirac connection). When expressed in terms
of the “components” of such a super-field, the universal Dirac action gives rise to a specific functional of these
components (and the metric) like in the case (60). Note that this is quite similar to super symmetric actions.

4. Conclusion, remarks and outlook

We presented a globally geometrical formula for the zero order operator uniquely associated with every Dirac
type first order differential operator. The form of this general Lichnerowicz formula (7) is as similar as possible to
the well-known Lichnerowicz formula (4) for Dirac type operators defined in terms of Clifford connections. We also
presented some natural restrictions on the domain of the canonical functional (2), see also below. A further study of
these restrictions will certainly be useful to gain some geometrical understanding of the moduli space MD of Dirac
type first order differential operators.

Furthermore, we proved the Dirac functional to be a natural generalization of the Einstein–Hilbert action of general
relativity. In fact, it follows that the full bosonic action of the Standard Model can be re-written linearly in the curvature
of an appropriate (“Pauli–Yukawa” type) Dirac operator in complete analogy with the Einstein–Hilbert action. In
particular, this holds true also for the pure Yang–Mills theory.

The study of the structure of MD may turn out to be useful to also obtain a deeper geometrical understanding of
the action on which the Standard Model is based. Furthermore, such an analysis is also needed to systematically go
beyond the Standard Model within the geometrical frame of Dirac type gauge theories. For this it will be interesting
to also discuss the (total) Dirac action from the point of view of (super-symmetric) Morse theory and how the critical
points of SD(D) are related to the “generalized Yang–Mills equations” naturally associated with every Dirac type first
order differential operator D ∈ D(ξD) :

dDFD = δDFD = 0, (74)

where dD is the exterior covariant derivative with respect to the Dirac connection ∇D and δD its formal adjoint. Clearly,
these equations are but the Euler–Lagrange equations of the generalized Yang–Mills action

SDYM(D) := λDYM

∫
M

trE (FD ∧ ∗FD), (75)

considered as a functional of (Dirac) connections on ξD. Note that, when expressed in terms of the components of
the super-field defining D, the action (75) generically yields fourth order derivatives of gM. This is one reason why
gravity in “Yang–Mills-like form” causes difficulties both classically and when one tries to quantize it. This, however,
does not hold true as long as the action (75) is treated as a functional of connections on ξD as in ordinary Yang–Mills
gauge theory (please, see also the corresponding remarks below).

The generalized Yang–Mills equation (74) may be re-written as

DFD = 0 (76)

according to the identification D = γ (∇D) = dD + δD, which generalizes the Gauss–Bonnet operator (45) to arbitrary
Dirac bundles ξD. Especially, the condition (76) on D ∈ D(ξD) clearly generalizes the usual Yang–Mills equations
formulated on general fermion bundles ξF with the metric gM being arbitrary but fixed:

6∂A FE/S
A = 0. (77)

For various principal G-bundles over certain (M, gM) and fermion bundles of the specific form ξF :=

τCΛM ⊗M Ad(G) a similar form of the Yang–Mills equations is extensively studied from the point of view of
Clifford analysis (see, for example, [9,10]). Indeed, the Maxwell equations on Minkowski space–time (whereby the
corresponding Grassmann bundle can be naturally regarded as a specific fermion bundle) have been introduced in a
form similar to (77) by various authors within the description of electrodynamics in terms of Clifford’s geometric
algebra (see, for example, in [12,14,13,17,19]; see also in [11,16] and the corresponding references therein, in
particular, for historical remarks concerning Maxwell’s equations and Clifford algebra).
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Note that for the Gauss–Bonnet operator Γ (τΛM)
6∂

−→Γ (τΛM), the generalized Yang–Mills equation (76) reduces
to the “homogeneous gravitational equation”:

6∂R = 0. (78)

Of course, this equation can be easily put forward to general Dirac bundles by the replacement (47):

6∂A R = 0, (79)

where now the twisting (Yang–Mills) part A is considered arbitrary but fixed.
We stress that this “covariant” (homogeneous) gravitational equation is well defined on general Dirac bundles ξD.

This is mainly due to the decomposition (50). As a consequence, the total curvature FA of a Clifford connection
∂A ∈ A(ξD) globally decomposes into

FA = R⊗ id + id ⊗ FE/S
A

≡ R+ FE/S
A . (80)

Hence, (79) locally coincides with (78) and together with the Yang–Mills equation (77) corresponds to the single
equation3

6∂A FA = 0. (81)

However, this field equation obviously does not give rise to physically admissible field equations neither for the
gravitational field, nor for the Yang–Mills gauge field. Indeed, (81) does not correspond to (76). This is because the
Dirac action with respect to 6∂A is independent of the twisting part of ∂A, as mentioned already. It therefore only yields
the homogeneous field equation of gravity, see (49) and the remarks thereafter. Likewise, the metric used in (68) to
derive the Yang–Mills equation (77) is arbitrarily chosen. To remedy this flaw of (81) one has to consider more general
Dirac connections than those satisfying the condition (16). In this respect it will be worthwhile to further investigate
the class of “Pauli–Dirac type” first order differential operators introduced in [22] (please, see Def. 5.1 in [22]).

In the case of dim(M) = 4, the relation between the critical points of the Dirac action (2) and the (anti-)self-dual
solutions

∗FD = ±FD (82)

of (74) (resp. of (76)) are of particular interest. This will be discussed in more detail in a forthcoming work with the
intention to study the universal Dirac functional more closely and to further classify Dirac type first order differential
operators.

For a description of Einstein’s theory of gravity in terms of Clifford algebras see, for example, [20]. In fact, from
the statements presented there, one may infer that there is a deep link between the critical points of the generalized
Yang–Mills action (75) and the Dirac action (2). In this sense the former functional may be considered as the
“square” of the latter functional formally analogous to the general Lichnerowicz decomposition (1) we started out
our discussion.
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